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Abstract
Simulation of the diffusion mechanism in amorphous alloys is carried out using three statistical
relaxation models Fe80B20 with 105 atoms. We found for the first time that the simulated
models contain a large number of vacancy bubbles, which could be a diffusion vehicle such as a
vacancy, as in the case of diffusion in a crystal. The numbers of these vacancy bubbles vary
from 2.8 × 10−3 to 1.245 × 10−2 per atom depending on the relaxation degree. Diffusion
coefficients have been calculated via the vacancy bubbles and they are very consistent with
experiment. The relaxation effect is also studied and interpreted as a result of vacancy-bubble
annihilation during thermal annealing.

1. Introduction

It is well established for certain amorphous alloys (AMA) [1–9]
that the diffusion coefficient of tracer atoms in well-relaxed
specimens decreases compared to as-quenched ones. Usually,
this effect has been interpreted as the existence of quasi-
vacancies in super-saturation. During thermal annealing these
defects are mobile and their super-saturation decreases as a
result of ‘quasi-vacancies’ and ‘free volume’ annihilations.
Hence, the diffusivity in as-quenched AMAs is reduced as a
function of time until the relaxation is over and the diffusion
coefficient reaches its final value. In the well-relaxed state,
conversely, the tracer atoms diffuse, not with the aid of
quasi-vacancies, but via the collective movement of a group
of neighboring atoms. However, the experimental measure-
ments [10–17] on the isotope effect, pressure dependence and
irradiation-enhanced diffusivity are sometimes in contradiction
to the prediction of the diffusion mechanisms just described.
In addition to these, the definition of the quasi-vacancy is not
clear. Furthermore, analyzing the creep and diffusion data
indicates that the vacancy-type defect is not the sole solution
to satisfy the available experimental data. Molecular dynamic
(MD) simulations, on the other hand, reveal the disappearance
of vacancies after their introduction into the MD model and
then relaxation in 10−10 s [18, 19] i.e. the vacancies are
unstable in an amorphous matrix. Closer inspection of the MD
model found a continuous spectrum of spherical voids [20],

but their sizes are less than the atomic size. As regards the
collective atomic jumps, the ‘free volume’ theory, extended
from that for a simple liquid, and the ‘two-level states’ theory
are also employed to interpret the specific behavior of diffusion
in AMAs [17, 22]. In accordance with the bond deficiency
model, several atoms (about 10 or more) move such that one
among them displaces over a large distance [21]. Applying this
model to Zr–Ti and Ti–Ni systems gives a good agreement with
experiment for the size effect of diffusing atoms. However, as
noticed in [21, 23, 24], none of the models mentioned could
properly interpret the available experimental observations, and
the diffusion mechanism of tracer atoms in AMA is still not
well understood.

In this paper, an attempt is made to address the role of
‘microscopic bubbles’ for diffusion in AMAs. This diffusion
vehicle is found for the first time in our simulated models.
Consequently, a new diffusion mechanism may occur due to
the contribution of these bubbles and the relaxation effect must
also relate to them. Therefore, this motivates us to carry out a
systematic study of these bubbles in order to shed new light on
the diffusion mechanism of tracer atoms in AMAs.

2. Calculation procedure

The molecular dynamic method is proven to be a valuable
tool for studying the structure and formation of AMA, but it
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Figure 1. The schematic illustration of the bubbles in the simulated model: (a) the simplest structural unit where four neighboring atoms form
a tetrahedron; (b) and (c) the bubbles with 5 and 6 atoms respectively; the dot-sided circle represents a CST. The arrow denotes the
displacement vector of DA.

requests very long computing times to construct a large model.
In this work we employ the statistic relaxation method (SR) to
prepare a model Fe80B20 of 105 atoms, because it is cheaper
to compute. In addition, the SR method also enables us to
construct models in different metastable states and to quickly
relax the system upon introducing the atomic jumps. The SR
method is in fact the molecular dynamic method in the limit of
zero temperature, e.g. the kinetic energy is equal to zero and
the volume is constant. Accordingly, each atom in the system
moves in the direction of the force acting on the given atom
from all the remaining ones by a length dr . This movement is
repeated many times until the system reaches equilibrium. The
averaged potential energy per atom is determined by

U = 1

NAtom

∑

i< j

ϕ(ri j), (1)

where ri j is the distance between the i th and j th atoms;
ϕ(ri j) is the pair interaction potential; NAtom is the number
of atoms. More details on the SR method can be found
elsewhere [20, 25, 32]. The simulation was performed on
a cluster system consisting of 50 PC nodes at the High
Performance Center, Hanoi University of Technology.

The initial configuration is generated by randomly placing
all atoms in a cube with periodic boundary conditions. The
effective pair potential of [20] is used and the density is adopted
from a real amorphous alloy (∼7.4 g cm−3). This sample is
treated over 106 SR steps to reach the equilibrium state. The SR
step length is equal to 0.01 Å. The validity of the constructed
model has been tested in that it reproduces the pair distribution
functions (PDF) well. Hereafter, this model is called model
A. To study the effect of relaxation, we prepare two additional
models (model B and C) with the same density as model A, but
for which the potential energy is lower. Model B was prepared
by relaxing model A with a SR step length of 0.4 Å within
100 SR steps. This is like shaking many times the atomic
arrangement in model A. Then we relax the obtained samples
with the SR step length 0.01 Å until the system reaches a new
equilibrium. This procedure is repeated many times such that
the potential energy of the model attains the desired value. The
model C was obtained by an analogous procedure.

Figure 1 schematically illustrates ‘microscopic bubbles’ in
the amorphous structure. Four nearest neighboring atoms form

a tetrahedron. If we built a circumsphere of this tetrahedron
(CST), then this CST may contain some atoms inside. The
atoms inside the CST are denoted as the ones that are located
from a center of CST at a distance less than RB − 0.1 Å. In the
following, we consider just the CST which does not contain
any atoms. Let RB and nB to be the radii of the CST (radii of
the bubble) and the number of atoms near the surface of the
CST, respectively. The atoms on the surface of the CST are
the ones that are located from the center of CST at a distance
in the range of RB ± 0.1 Å. Figure 1 presents three CSTs
with nB = 4, 5 and 6. The first one is the simplest structural
unit (figure 1(a)). The ‘microscopic bubble’ is denoted as that
CST which attains nB greater than 4. Probably, these bubbles
have been formed due to the rapid cooling process. They
represent a defect in the amorphous structure. One of most
important properties of the bubbles is that they have a larger
empty space inside the CST in comparison with the simplest
structural unit (see figure 1). If one of the atoms located near
the CST surface could jump into the CST, then we observe an
elementary diffusion process similar to the movement in the
opposite direction between an atom and a vacancy in crystal.

3. Results and discussion

The structural characteristics of the constructed models are
summarized in table 1. They are very close to the simulation
data in [25] and reproduce well the diffraction experimental
data from [26–28]. The PDFs for model A, shown in figure 2,
has a split second peak like that observed experimentally,
which is often thought to be related to the existence of an
icosahedron in the system. Although the averaged potential
energies per atom of these models are quite different, their
structural characteristics are very similar to each other (see
table 1). Therefore, it is reasonable that these models
reproduce the three metastable states of AMA Fe80B20 upon
thermal annealing. Accordingly, the lowest energy model
corresponds to a well-relaxed and the highest energy model to
an as-quenched specimen.

Table 2 lists the number of bubbles detected in our models.
All models contain more than one bubble per atom. The well-
relaxed model (model C) has a smaller number of bubbles
compared to the as-quenched model (model A). This trend is
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Figure 2. The pair distribution functions of model A.

Table 1. Structural characteristics of the amorphous alloy Fe80B20.
Here rFeFe, rFeB and rBB are the positions of the first peak in the PDFs
for pair Fe–Fe, Fe–B and B–B respectively; ZFeFe, ZFeB, ZBFe and
ZBB are the averaged coordination number for pairs Fe–Fe, Fe–B,
B–Fe and B–B, respectively.

rFeFe (Å) rFeB (Å) rBB (Å) ZFeFe ZFeB ZBFe ZBB

Model A 2.52 2.2 3.12 11.64 2.34 9.35 4.30
Model B 2.54 2.18 3.20 11.66 2.35 9.39 4.32
Model C 2.54 2.18 3.18 11.69 2.36 9.45 4.35
Fe80Ba

20 2.65 2.20 3.15 — — — —
Fe80Ba

20 2.57 2.14 — 12.4 2.2 8.6 —
Fe80Ba

20 2.57 2.06 — 11.8 2.4 9.3 —
Fe83Ba

17 2.58 2.1 — 12.2 1.9 9.4 —

a The experimental data from [26–28].

Table 2. The number of bubbles.

Number of atoms nB

Model
The mean potential
energy per atom 5 6 7 8 9

A −1.4889 102 615 17 580 823 64 0
B −1.4995 100 029 15 843 879 67 1
C −1.5195 97 235 15 195 546 8 0

also observed in table 3 showing the distribution of bubble
radius. It can be seen that the number of large bubbles, those
with a radius larger than 1.6 Å, in the well-relaxed model is
smaller than that in the less-relaxed model. In model A we
found more than 20 bubbles with a radius close to the lattice
constant of bcc crystal iron (∼2.86 Å).

Now we focus on the question of the importance of
the bubbles for diffusion. For every bubble, we examine
the potential energy variation of all neighboring atoms as
they move step by step on a line connecting their initial
equilibrium position and the center of the CST. The length of
the displacement step is equal to 0.02 Å (see figure 1(b)). The
potential energy profiles (PEP) for an atom moving into the
bubbles b, c, d and e are shown in figure 3. For the bubble b,
a monotonous increase is found. It means that the neighboring

Figure 3. Potential energy profile of atoms moving from their site to
the center of the CST; (c)–(e) belong to VB.

Figure 4. The distributions of site energy (left) and energy barrier
(right) for DAs.

atom cannot jump into bubble b due to a very large energy
barrier. In the case of the bubbles c, d and e we conversely
observe a maximum in the graph of the PEPs. These are
like the typical PEP for a tracer atom jumping into a vacancy.
Therefore, these bubbles play a role as a diffusion defect like
a vacancy in crystal. Hereafter, we call the bubbles shown in
figure 3 having the PEPs c, d and e, vacancy bubbles (VB). The
atoms attaining the corresponding PEP are called the diffusing
atom (DA). The numbers of VBs are listed in table 4. There are
two kinds of VB: iron-VB, where the Fe atom can move into
the VB and boron-VB corresponding to the boron-DA. It is
essential to notice that in the less-relaxed model the number of
both kinds of VB is larger compared to the well-relaxed model.
Furthermore, the ratio mFe/mB for the less-relaxed model is
also larger compared to the well-relaxed model. Figure 4
shows the distributions of site energy and the energy barrier
for the DA. The graphs for all models considered are similar
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Table 3. The distribution of bubble radius.

RB (Å) 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 >2.4

Model A 270 22 725 27 516 30 039 29 840 6729 2751 918 203 71 20
Model B 211 23 225 27 260 28 717 29 229 5305 2090 655 104 23 0
Model C 216 25 329 25 503 28 299 28 417 4000 1046 169 5 0 0

Figure 5. The square displacements of iron and boron atoms x2
Fei , x2

Bi
for the ith run of DA moving; i = 1, 2, . . . , 70.

to each other and have a Gaussian form. The energy barrier is
determined by the difference between the maximum point in
the PEP and the site energy of the DA (see figure 3).

After the determination of VBs we displace the DA into
the center of the CST and then relax the system until it
reaches a new equilibrium, in order to inspect the collective
atomic movement. For convenience we call the simulation
procedure just described ‘the DA moving’. Table 4 lists the
averaged square displacements 〈x2

Fe〉, 〈x2
B〉 after the DA moving

is completed, and the x2
Fei , x2

Bi for the individual i th run is
displayed in figure 5. It clearly shows that the x2

Bi mostly

fluctuates around 4.0 Å
2

for boron-DA and it is close to zero
in the case of iron-DA. Because the jumping distance of the
DAs is in the range of 1.7–1.9 Å, it follows that the boron-
DA contributes the dominant part of x2

Bi e.g. other B atoms
move not so far from their initial positions under the DA
moving. In model A we sometimes observe very large x2

Bi

(>7 Å
2
) indicating several B atoms involved in the collective

motion. In the case of iron-DA the value of x2
Fei for most runs

is conversely significantly larger than 4.0 Å
2

and sometimes
it reaches ∼16 Å

2
. This result is expected and shows the

collective character of the atomic movement upon iron-DA
moving. Due to its large size in comparison with boron, the
jump of an iron atom leads to a significant local rearrangement
of the atoms located near the VB. Meanwhile, small boron
diffuses like the movement of an interstitial impurity through
the boron bubbles.

As such, the diffusion mechanism is performed as follows:
one DA (B or Fe) jumps into a VB and the present VB
disappears, but another VB may be created somewhere in an

Table 4. The number of VBs and the averaged square displacement
upon the DA moving. Here 〈x2

Fe〉, 〈x2
B〉 are the averaged square

displacement of Fe and B atoms as a DA jumps into the VB
respectively; mFe, mB are the numbers of iron- and boron-VB,
respectively.

Iron-DA Boron-DA

Model mFe mB 〈x2
Fe〉 (Å

2
) 〈x2

B〉 (Å
2
) 〈x2

Fe〉 (Å
2
) 〈x2

B〉 (Å
2
)

A 472 772 7.140 0.508 0.613 4.092
B 234 627 6.482 0.251 0.758 4.478
C 28 382 5.664 0.321 0.447 4.171

amorphous matrix due to the collective atomic movement upon
DA moving. The most probable place for the formation of
a new VB is the location where the bubbles exist. It means,
that as a result of collective movement of a group of atoms,
the bubbles become VBs. That is, the VB is unlike the quasi-
vacancy described in [1–5] which moves over a certain distance
until it is annihilated at a sink source (free surface, internal
cavity).

Consider jumps of the i th DA with the jump completion
frequency ϕi and the mean square displacement x2

Si for S-type
atoms, the diffusion coefficient [33]

Ds = 1
6 f 〈ϕi x

2
Si〉, (2)

where S denotes Fe or B; f is the correlation factor for
consecutive hops. The averaging 〈ϕi x2

Si〉 must be carried over
all i th atoms. We thus get

〈ϕi x
2
Si〉 = 1

NAtom

[
mFe∑

i

ϕFei x
2
Si +

mB∑

i

ϕBi x
2
Si

]
. (3)

The jump frequency ϕSi is given as

ϕSi = ν0 exp(smSi/kB) exp(−hmSi/kBT )

≈ ν0 exp(−hmSi/kBT ). (4)

Here smSi, hmSi denotes the entropy change and migration
enthalpy; kB is the Boltzmann constant; T is the temperature;
ν0 is the attempt frequency (∼1012 s−1).

There is only a small amount of experimental data
on tracer diffusion in the Fe80B20 system, so we make a
comparison with the amorphous alloy Fe40N40B20, which has
very accurate data on tracer diffusion. From the data shown in
table 4 and figure 3, we get DFe = 10−20–5 × 10−22 and DB =
10−19–2 × 10−19 m2 s−1 at 593 K. This result is consistent
with experimental data for amorphous Fe80B20 (DFe ∼ 10−21–
10−22 m2 s−1 [1]) and Fe40N40B20 (DFe ∼ 10−21 and DB ∼
10−19 m2 s−1 [29–31]) at the temperature considered. As
regards the relaxation effect, our simulation shows that the
decrease in diffusion coefficient results in the loss of VBs upon
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relaxation. The numbers of iron- and boron-VBs in model
B decreases by factor of 9 and 2 compared to model C (see
table 4). As a consequence the diffusion coefficient decreases
by a factor of 10 and 3. This result is also in reasonable
agreement with experiments on Fe diffusivity in Fe80B20 and
Fe40N40B20 AMA [3, 29–31]. Note that the annihilation of
VBs in the well-relaxed model is concerned with the atomic
rearrangement within the amorphous matrix, but not due to
the sink source where the diffusion effect moves to, which has
been described by quasi-vacancy models in previous references
(see [1–5]).

4. Conclusion

A systematic study on the diffusion mechanism in amorphous
solids has been carried out using three models Fe80B20. Several
conclusions can be made as follows.

(i) We found that the AMAs have a large number of VBs
which could be a diffusion vehicle as a vacancy in crystal
i.e. one DA in the VB could move into the center of
the CST and present an elemental diffusion jump. The
number of VBs are found in the range from 4.1 × 10−3 to
1.245 × 10−2 per atom for AMA Fe80B20 depending on
the degree of relaxation.

(ii) We present a new diffusion mechanism in that a DA
jumps into the VB, then the collective movement of
neighboring atoms starts. Consequently, the present VB
disappears, but another VB may be created elsewhere in
the amorphous matrix. The diffusion coefficients of B
and Fe are calculated via the VBs detected and the result
is very consistent with experimental data, indicating the
validity of the suggested diffusion mechanism.

(iii) The decrease in diffusivity upon the relaxation found
in the present work results in VB annihilation. Our
simulation reveals that the VB is unlike the quasi-vacancy,
which is used to interpret the relaxation effect in previous
works. The VB annihilation relates to a DA jump into the
VB and the atomic rearrangement within the amorphous
matrix occurring under the DA moving completed. The
most probable place for the formation of a new VB upon
DA moving is a location where bubbles exist.
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